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Conceptual design 
The APD test board uses a Fermilab MASDA1 ASIC to integrate AC coupled signals 
from a Hamamatsu 32 pixel APD array model S8550.  The MASDA-X chip performs 
dual correlated (before/after) sampling of the inputs.  There are 
2 sets of sample capacitors for each channel, referred to as A 
and B.  Only one set is used in the prototype board since the 2 
sets will have slightly different offsets and slightly different 
gains.  The MASDA has 128 channels, only 32 of which are 
used and readout.  The Xilinx CPLD supplies integrator reset, 
integration timing, readout logic, and readout clock timing 
signals as multiples of the externally supplied clock, which 
runs at 1MHz nominally.  The digitized data are sent out for 
every trigger and every channel on the data interface lines.   

APD readout board design 
 
 

 

Figure 2 APD readout board version 2 with major components indicated 

In production the MASDA is covered to protect the delicate wire bonds underneath.  
High voltage (~400V) for the APD arrays are supplied via the lemo connectors.  The 
voltage for the version 2 board described and shown here is POSITIVE.  There are 2 
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independent diodes in each S8550 package which may require different bias voltage to 
run at the intended gain.  The power connector J1, the upper LEMO connector in Figure 
2, supplies HV power to the even channels, 0-30, and J7 supplies power to the odd 
channels, 1-31.  In addition Figure 2 shows the layout of the board and the major 
components, the APD itself is mounted on 
the back side, the MASDA, the ADC, and 
the CPLD.  On the right hand side of the 
figure is the main interface connector, a 34  
pin header.  This is used to supply the 
clock signal (1MHz TTL compatible), 
power (+5V) and a trigger signal as inputs.  
The output data bits are also on this 
connector as well as a signal indicating the 
start of the integration time.  All the pins at 
the edge of the board are connected to the 
ground plane.  The remaining 17 pins are 
arranged as in Table 0.1. 
The clock and power signals are 
electrically connected to 2 pin headers J2 
and J6 respectively.  This provides the 
flexibility of driving the board with signals 
from the interface cable or separately. 

Additional interface 
connectors 
There are several additional interface 
connectors on the board that can be programmed to provide additional configuration 
control or output signals if needed by simply reprogramming the CPLD.  The 
programming connector is TS1, the single row header located at the top of the board in 
Figure 2, pin 1 is located at the left hand side.   Programming can be done with a 
Windows PC with a PC Parallel Port and a programming cable from Xilinx (costs about 
$100).  The programming takes only seconds using free programming software from 
Xilinx.  The connector pinout is arranged as indicated in Table 0.2.  Headers J3 and J5 
can be programmed as configuration jumpers or additional outputs if needed.  They are 
programmed as in Table 0.3 and Table 0.4. 
JTAG Pin JTAG signal 

1 TCK 
2 TDI 
3 TDO 
4 TMS 
5 VCC 
6 GND 

  

Table 0.2 TS1 header signals 

 

Signal Line Signal 
1 Clock (1MHz TTL)  
3 POR 
5 TRIG  
7 Data Valid  
9 D0  
11 D1  
13 D2  
15 D3  
17 D4  
19 D5  
21 D6  
23 D7  
25 D8  
27 D9  
29 SBEF  
31 Spare 
33 Power (+5V)  

2,4,6,…,32,34 GND 

Table 0.1J4 header signals 



The signals on the J3 connector are output signals for monitoring board operation. 
 

J3 Pin Signal 
1 ABSEL 
3 SBEF 
5 RC2 
7 RC3 
9 COMB_CLK_UNUSED 
11 COMB_TRIG 
13 COMB_POR 
15 COMB_CLK 

2,4,…14,16 GND 
  

Table 0.3 J3 signals (the upper/smaller one) 

The signals on the J5 header are both output and inputs to the CPLD.  The first 3 signals 
are again for monitoring of the board operation.  The other signals are inputs to change 
the operation of the MASDA if needed.  The BW_INP_X pins are used to control the 
bandwidth (risetime) of the integator output.  The default is the fastest, at 360-500ns.  
Jumpering these pins will decrease the bandwidth, and increase the risetime.  The 
GAIN_INP_X signals can be used to change the gain of the MASDA.  The default is the 
second highest gain.  Currently jumpering the pins will lower the gain, by adding binary 
weighted capacitors to the integrator feedback.  The first will make the gain about 1/3, 
the second about 1/5, and the third about 1/9.  The other signals, EXT1 and 2 are used to 
control the phase of readout for the MASDA, since we only use ¼ of the channels it has 
to skip them on readout, and these pins are used to adjust it in case the bonding is 
different for different boards somehow.  (Should come properly jumpered, with only 
EXT1 jumpered.  Don’t remove it.) 

J5 Pin Signal Input/Output 
1 ACQ Output 
3 READY Output 
5 DONE Output 
7 NC -- 
9 BW_INP_3 Input 
11 BW_INP_2 Input 
13 BW_INP_1 Input 
15 GAIN_INP_3 Input 
17 GAIN_INP_2 Input 
19 GAIN_INP_1 Input 
21 EXT2 Input 
23 EXT1 Input 

2,4,…,22,24 GND -- 

Table 0.4 J5 signals (the bigger/lower one) 



APD references and description 
 
The Hamamatsu S85502 APD is a package of 2 electrically independent APD arrays of 
2x8 pixels.  The pixel size is 1.6mm square and the pixel pitch is 2.3mm in both 
directions.  The spacing between the two arrays is 2.6mm to allow for the ceramic 
insulator between the 2 arrays.  The array is arranged as a common cathode configuration 
and requires a bias voltage of approximately 400V.  The actual specification for each 
APD will come from Hamamatsu and from tests during the checkout procedure for the 
board with the mounted APD. 
 
The back side of the APD has been potted with RTV to inhibit discharge which may 
happen if there is some contamination or moisture allowed to form.  This has happened in 
practice, and the RTV should prevent it from happening in the future.  The result is the 
death of at least the one diode array that sparks. 

 

Figure 3 Pixel arrangement and dimensions from Hamamatsu Specifications Sheet 
for Si APD S8550. 

 
Pixel Number Readout Channel Pixel Number Readout Channel 

A1 0 A3 1 
A2 2 A4 3 
B1 4 B3 5 
B2 6 B4 7 
C1 8 C3 9 
C2 10 C4 11 
D1 12 D3 13 
D2 14 D4 15 



E1 16 E3 17 
E2 18 E4 19 
F1 20 F3 21 
F2 24 F4 23 
G1 22 G3 25 
G2 26 G4 27 
H1 28 H3 29 
H2 30 H4 31 

Table 0.5 

Mechanical Design/Layout 
For anyone interested in physical interface to the board the dimensions and hole sizes etc. 
for mounting are found in the gerber files that are posted here:  
http://www.hep.umn.edu/~mualem/oa/gerbers/APD2-13-04PM.zip 
The 8 large mounting holes near the APD and at the other end are 0.125”, and are located 
relative to the lower left corner of the board (oriented so you can read the designer’s 
name.) are as follows: 
X location (mils) Y location (mils) 
200 800 
200 2200 
600 800 
600 2200 
3250 250 
3250 2750 
4750 250 
4750 2750 

Table 0.6 Large mounting hole locations, the first 4 are near the APD for mounting 
the cooler, and the next four are at the other end of the board for mounting to a box. 



 

Figure 4 Layout sketch of 1.2mm fiber cookie with dimension in mm. 

 

Board operation 
The readout board has two operational states, an acquire mode and a readout mode.  The 
acquire mode clocks the IRST, SBEF, SAFT, and ABSEL signals to the MASDA.  It first 
resets the integrator to VREF, then it holds the before sample on a capacitor on the falling 
edge of SBEF, this starts the integration time.  The after sample is then held when SAFT 
goes low ending the integration time and the acquisition of this sample.  The integral is 
then the difference between the before and after samples.  This is dual-correlated 
sampling.  If the board did not receive a trigger (rising edge on J4 pin 3) before SAFT 
goes low another acquire sequence will be initiated.  This will continue until a trigger is 
received and the CPLD switches to readout mode. 

 

Figure 5 MASDA acquire clock timing as programmed. 

IRST is held for 2 clock cycles, when the minimum recommended is 1us.  The 2 clock 
cycle setting is conservative, in order to minimize noise.  The long time after IRST goes 
low before SBEF goes low is to allow more time for the sample capacitors to settle.  The 
bandwidth is halved since the SBEF and SAFT capacitors are both connected during this 
time.  The minimum recommended is about 3 us in this configuration.  The 9 clock cycles 
is again conservative in order to minimize the noise.  The next 2 clock cycles after SBEF 



goes low are the actual integration time.  Since the risetime of the output stage of the 
integrator is about 500ns the actual live time is less than 2us.  In order to fully collect the 
signal the signal window (that should be used for coincidence triggering) starts when 
SBEF goes low and last 500ns.  The SBEF signal is on the interface connector for just 
this purpose.  If the coincidence window is longer the amount of charge collected will 
depend on the actual time of the signal, so the variation will be greater. 
 
In readout mode the acquired signals are multiplexed onto the output bus of the MASDA 
where they are digitized by the 10-bit ADC three times.  The CPLD adds the data from 
these samples together to average the signal.  This averaging reduces the noise by about 
5% and increases the effective LSB size, or increases the number of bits to almost 12.  
Each sample takes 16us to read out, and the 12 bits are read out as 2 6 bit words so that 
the entire board can be read out in little more than 1ms.  The data are sent out 
asynchronously to the PC, so the board will function even without a PC reading the data. 
 

 

Figure 6  Readout clock sequence showing 2 full data samples. 

Data acquisition programs 
There are two data acquisition programs that have been tested to work with the board.  
The first is programmed in NI LabWindows and provides a GUI to drive the board, select 
the number of samples, output files etc.  The limitation of this program is that it must be 
run with one of the older consumer versions of windows, 95/98/Me.  This is due to 
restrictions against direct port access in NT based systems.  This slows down the access 
too much and the data acquisition may become unreliable.  It might work for some 
systems and not for others, therefore I recommend using a computer with the previous 
operating systems for reliable operation.  There is also a program written in C++ that can 
interface with root and run under Linux.  At the moment it can acquire data correctly, but 
does not have a nice interface.  It also requires that you be able to perform direct port 
reads and disable interrupts, so it must at least be SUID root.  (If you don’t understand 
this, go with the windows.) 
 
The port that is used for data acquisition is a standard parallel port set to bi-directional 
(BYTE) mode, which allows reading of 8 bits at a time.  It should work with just about 
any parallel port setting, but is somewhat more likely to work if it is set to ECP in the 
BIOS.  This enables the program to set the mode to BYTE correctly.  The speed of the 
computer is essentially irrelevant.  I have had it working reliably on 200MHz Pentium up 
to 800MHz P-III with essentially no difference in acquire speed.  (Since the parallel port 
is so slow, it would probably work on a PC-XT.) 



 
In order to acquire data the PC takes control of the TRIG line on the interface connector 
with the parallel port –STROBE line.  This allows the PC to control when acquisition 
may occur.  This line can either be directly connected to the TRIG line, or broken out to 
use in triggering logic; this mode will be covered later.  The PC polls the DataValid line 
from the DAQ board.  This line is connected to pin 12 of the parallel port, the -PE 
(printer error) bit, and is read by reading the status byte of the printer port, which is 
usually 0x379.  The data bits 0-7 from the DAQ board are connected to data bits 0-7 on 
the parallel port cable.  Data bits 8 and 9 from the DAQ board go to –ACK and –Busy 
respectively.  The bits 8 and 9 are vestigial, and could be used if needed, but do not 
currently convey any information.  The two 6 bit data words are sent on the bits 0-5 lines, 
and bits 6 and 7 indicate the phase of the data:  Bit 6 indicates whether the 6 bits are Most 
or Least significant bits, and Bit 7 indicates whether it is the Q or I mode channel of the 
ADC that digitized the signal.  The DataValid line indicates, as expected that the data on 
the data bus is valid.  This signal goes high one clock cycle after the data are presented, 
which is more than enough time for the bits to settle.  The entire readout cycle is simply 
watching DV go high and low and recording the data.  Since the DAQ program knows 
what to expect next it is able to detect a missed sample.  When this happens the entire set 
is simply discarded and a new acquire/readout cycle is started.   This means you only get 
complete and correct information.  If anything is amiss during a sample it is discarded.   
 
One set of 6 bits is read in a minimum of 3 reads of the port.  The first is when the polling 
sees that -DV has gone low the second is when it reads the 8 bits from the port, and the 
third is another read to the –DV bit to ensure that it is still low, and that the data did not 
become invalid during our read.  A typical port read time is 1.2-1.6us under Linux or the 
consumer windows versions (98 or ME).  With the data persisting for 15us there is plenty 
of time to perform these three reads.  Under NT the typical port read times are 4-6us, 
which does not allow enough time to perform all 3 reads reliably.  It is possible to 
lengthen the DV time, but then you run into another problem on WinNT, that you can not 
disable interrupts and may be interrupted during your readout cycle which leads to a 
different sort of unreliability.  It may be possible to provide the slow readout as a jumper 
selection, but it would probably be a last resort, and it would better if everyone simply 
uses a “reliable” OS. 
 

LabWindows APDdaq 
 
I intend to keep a recent and functioning copy of the DAQ software in 
http://www.hep.umn.edu/~mualem/oa/apd_v2/apddaq/.   
 
Data acquisition is controlled by a simple program called apddaq.exe.  The control panel 
for this is shown in Figure 7.  The buttons on the left hand column provide some 
diagnostics.  They are vestigial, and will probably be removed at some point, though they 
may provide some useful diagnostics if there are problems.   The “Quit” button on the 
bottom is functional, and will quit the program at any time.  The selector in the middle, 
“Board type” selects between different hardware versions of the APD board.  It defaults 



to “V2 avg”, which is appropriate for most users, as there is only one V1 board in 
existence.  The selection is available so that the program will be identical in all locations 
to minimize debugging problems.  The “Samples to acquire” control sets the number of 
DAQ cycles that will be attempted.  On each cycle all 64 channels will be read.  A cycle 
is only counted if all channels read out successfully.  If not, the program will discard any 
acquired data and try to again to get  a valid set of samples.  The “Go” button starts the 
data acquisition, which will continue until reaching the selected number of samples.  The 
“STOP” button will stop the data acquisition essentially immediate.  The “Output File” 
control sets the name of a file that the acquired data will be dumped into.  The target file 
is emptied on each data acquisition if it exists, if it does not exist it will be created and 
filled.  Clicking on the textbox will open a dialog to choose a file, from an explorer type 
navigation box, or simply type the file name.  For use with the analysis programs, it 
might be useful to take some pedestal data as a “.ped” file.  If you take light injection, 
and name the pedestal file filename.ped, and the light injection file as filename.li, it can 
be very useful.  
 
The controls near the bottom right corner serve as progress indicators.  The “Samples 
acquired” progress bar will grow as samples are acquired, and the text box will show the 
actual number of samples acquired in steps determined by the “Increment” control.  If 
you are reading noise or light injection, an increment of 100 is appropriate.   The DAQ 
proceeds at about 100Hz, so it is easy to tell that it is still alive, and does not consume a 
lot of resources in updating the display.  If you are acquiring cosmic ray data, which will 
come in much slower (depending on size of detector, triggering you choose, etc.) it might 
be appropriate to set the increment all the way down to 1. 
  

 

Figure 7 LabWindows DAQ panel. 

When the program starts a couple of status lines will be printed in a stdout window.  This 
might include a warning about non-ECP modes which is probably innocuous, and it will 



report the time to 1 million port reads.  This number should be about 1-2us/read.  If it is 
substantially longer, there is something rather strange, and DAQ may be unreliable. 
 
Upon completion of the desired number of samples a report will be printed to stdout.  
This will contain the mean and RMS for each channel, and the average RMS and RMS of 
the RMS values for each entire array.  There are 2 arrays on the board, one reads out on 
the even channels, and the other the odd channels.  These are reported separately since it 
is possible that you might run one array and not the other with the proper bias voltage. 

Linux APDdaq 
Currently out of date, so unavailable.  Let me know if this is a deeply desired feature. 

DAQ Hardware 
The current DAQ hardware consists of one cable that connects to the APD board on one 
end and the PC parallel port on the other through an “RS-232 jumper box”3.  The jumper 
box really has nothing to do with RS-232, it is simply a configurable DB-25 male to DB-
25 female adapter where all connections are made via jumper wires.  This is how the 
APD board signals are connected to the appropriate parallel port signals.  The 
connections are as shown in Table 0.7. 

 

Signal Line APD Board Signal Parallel Port Signal Parallel Port Pin 
1 Clock (1MHz TTL) 

 
  

3 POR   
5 TRIG –STROBE 1 
7 Data Valid  PE 12 
9 D0  D0 2 
11 D1  D1 3 
13 D2  D2 4 
15 D3  D3 5 
17 D4  D4 6 
19 D5  D5 7 
21 D6  D6 8 
23 D7  D7 9 
25 D8  –ACK 10 
27 D9  –BUSY 11 
29 SBEF    
31 Spare   
33 Power (+5V)    

2,4,6,…,32,34 GND GND 18-25 

Table 0.7 APD readout board signals and their connections to parallel port lines. 



External Triggering 
In this connector the –STROBE line is actually not directly connected, the TRIG line and 
–STROBE signals actually come out on LEMO connectors.  If they are joined with a 
LEMO barrel then the board will switch to readout mode and send the data out after 
completion of the next acquire sequence that completes after TRIG goes high.  If they are 
disconnected then it can be used for external coincidence triggering.  The way this works 
is to use the –STROBE TTL signal from the PC to indicate that the PC is ready to read 
out the data.  The other part of an external trigger is determined by the SBEF signal on 
the data cable.  The integration window starts when SBEF goes low.  The total 
integration time is 2 clock periods.  Due to the risetime of the output of the integrator in 
the MASDA it takes 1.5us to collect the entire charge.  Therefore the coincidence gate for 
a valid signal should be the AND of the –STROBE line and a gate pulse that can be 
generated when SBEF goes low and lasts 2*Tclock-1.5us.  For example if your clock is 
running at 1MHz Tclock is 1us, so the gate is 0.5us long starting when SBEF goes low.  If 
there is a coincidence, then the external logic should generate a high TTL level on the 
TRIG  line to indicate there was a valid coincidence trigger and that the data should be 
read out.  This signal must come before 4 clock periods have elapsed from the time SBEF 
goes low.  This is typically 3.5us from the integration gate, which is quite a long time for 
typical logic modules, so should not be a problem.  If there was not a TRIG high signal 
the APD board will start another acquire sequence immediately. 
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Figure 8 Trigger logic used for external coincidence logic.  Gate widths are 
approximate.  Modules shown are all standard LeCroy NIM modules, the buffers 
and inverters are all LRS688 level translators.  The triple buffering of SBEF is 
necessary to debounce a somewhat noisy signal, only one may be necessary. 



The typical way generate the gates and perform this logical comparison is by using 
standard NIM logic modules.  It is particularly useful to have gate generators, 
discriminators (for external trigger counters), coincidence generators, and TTL-NIM 
level translators for interfacing the two standards.  These can be loaned from FNAL 
PREP.  The scheme that I used is shown in Figure 8. 
 

CPLD program 
Updated CPLD information can be found at 
http://www.hep.umn.edu/~mualem/oa/apd_v2.  This contains a directory call 
CPLD_APR13 that contains the actual programs/components used to build the 
programming file for the CPLD.  There are hundreds of files here, as this is a copy of the 
entire directory.   Most of the files are of no real use to you, but there are a few 
interesting ones.  The most interesting ones being ACQ_CLKS.vhd, which show the 
states/timing for the acquire sequence.  Also, readout_control.vhd shows the sequence for 
the digitization and readout sequence.  There is also a postscript of the figure with the 
program schematic, which might print more legibly as top.sch.ps. 

 

Figure 9  Schematic of operation of Xilinx CPLD. 



Analysis programs 
I have written a few Root macros that are useful for analyzing the data files.  They should 
be found at http://www.hep.umn.edu/~mualem/oa/apd_v2/macros/.   
 
The data file format is simply channel number and ADC value for all 32 channels for 
each acquired sample.  This makes it rather simple to write your own analysis program in 
whatever language and using whatever OS you want.  I chose to use Root, so that it 
would be portable and not require a compiler.  (You can use ACLIC on them if you 
want.)  The first program is called pedonly.C, (you might need pedonly.h also for 
ACLIC)  The program will take a single filename and make an ntuple of the data, 
compute pedestals for each channel, and fill an ntuple with pedestal and common mode 
noise subtracted data.  The common mode subtraction reduces the noise about 10%.  It 
should be a valid operation since in general the occupancy of the detector will be very 
low, so it is reasonable to use some fraction of the lowest data on each array to do 
common mode subtraction, and thus reduce the noise.  Although the common mode noise 
is correlated between the two arrays, it is calculated separately for each array in case only 
one is operating in a given file.   
 
Running the program on a pedestal data file called mydata.ped would look like this: 
root –l ‘pedonly.C(“mydata.ped”)’ 
This will produce the two ntuples mentioned above using the data from mydata.ped, and 
two histograms, one for each array, of the pedestal and common mode noise subtracted 
data.  It will also fit the histograms with a Gaussian which will indicate the noise level as 
sigma, reported in stdout, and plotted on the histograms.   
 
There is another program for displaying light injection data.  It works best if you take 
pedestal and light injection data with the same filename with .ped and .li extensions 
respectively.  First you have to load the pedonly.C file as above, then run the liwped.C 
file with the filename with no extension as the argument, e.g. : .x ./liwped.C(“filename”).  
That will analyze the file filename.ped to find the pedestal values to subtract from the 
data in filename.li containing the light injection data.  It will finish displaying a lego plot 
of the light injection pulse height distributions for all 32 channels. 
 
The program apddisplay.C can be used to display the hit pattern and event by event pulse 
heights in the apd array.  An example picture of a track in a 4x8 cell scintillator tracker is 
shown in Figure 10.  The color of the box and the text indicate the pulse height detected 
in units of photoelectrons assuming APD gain of 100 and the standard readout board 
conversion gain of 208e-/mV. 



 

Figure 10 Sample track in a 4x8 array of scintillator strips arranged as a tracking 
module. 

                                                 
1 MASDA reference information available on web at http://library.fnal.gov/archive/test-tm/2000/fermilab-
tm-2063.pdf.  Additional references with more or less the same information are here: 
NIM A 485 (2002) 661-675.  "Design and performance of a low noise 128  
channel ASIC preamplifier for readout of active matrix flat panel imaging arrays"  
and  
T. Zimmerman, The MASDA-X chip––a new multi-channel ASIC for readout of pixelated amorphous 
silicon arrays, Fermilab technical note FERMILAB - TM-2063, 1998.   
and 
R. Yarema, et. al., “A Programmable, Low Noise, Multichannel ASIC For Readout of Pixelated  
Amorphous Silicon Arrays,” presented at the 8th European Symposium of Radiation Detectors  
June 14-17, 1998, S&loss Elmau, Germany. Submitted to NIM. 
 
2 Details of the Array are found here http://usa.hamamatsu.com/assets/pdf/parts_S/S8550.pdf 
 
3 This is Digi-key Part number AE1039-ND. 


